Sains Malaysiana 52(7)(2023): 2037-2053

http://doi.org/10.17576/jsm-2023-5207-12

 

The Ameliorative Effects of Selenium Nanoparticles (SeNPs) on Diabetic Rat Model: A Narrative Review

(Kesan Amelioratif Selenium Nanozarah (SeNPs) pada Model Tikus Diabetik: Suatu Ulasan Naratif)

 

ANAS AHZARUDDIN AHAMAD TARMIZI1, SITI HAJAR ADAM2*, NIK NASIHAH NIK RAMLI1, NUR AHFIZAH ABD HADI1, ABDUL MUTALIB MAISARAH1, SHIRLEY GEE HOON TANG3 & MOHD HELMY MOKHTAR4

 

1School of Graduate Studies (SGS), Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor, Malaysia

2Pre-clinical Department, Faculty of Medicine and Defence Health, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia

3Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

4Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia,
Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia

 

Received: 6 December 2022/Accepted: 7 July 2023

 

Abstract

The emergence of nanotechnology has become more popular, and the progress had sparked much development in nanoparticle synthesis, including selenium. Studies associated with the therapeutic abilities and physicochemical properties of selenium nanoparticles (SeNPs) are rapidly growing and gaining interest from many researchers. This review discusses on the fundamental components of selenium, different approaches in synthesizing selenium nanoparticles, its remedial properties and potential in biomedical application. Herein, primary focus will be given to the action of selenium nanoparticles mechanism in improving diabetes mellitus symptoms and complications in animal studies. It is known that selenium is an important micronutrient found in humans, plants and animals that can be incorporated as selenoprotein in the human body. Analysis and comparison on the findings enlighten that SeNPs demonstrated ameliorative effect on diabetes complications due to their antidiabetic, antioxidant, anti-inflammatory and lipid-lowering characteristics.

 

Keywords: Antidiabetics; diabetes mellitus; green synthesis; nanoparticle; selenium

 

Abstrak

Kemunculan nanoteknologi telah menjadi popular dan kemajuannya telah mencetus pelbagai perkembangan dalam sintesis nanozarah, termasuklah selenium. Kajian berkaitan dengan kebolehan terapeutik dan sifat fizikokimia selenium nanozarah (SeNPs) telah berkembang pesat dan mendapat tumpuan para penyelidik. Kajian ini membincangkan tentang komponen teras selenium, pendekatan berbeza dalam sintesis nanozarah selenium dan kebolehan pemulihan serta potensi dalam aplikasi bioperubatan. Di sini, penulisan menjurus kepada mekanisme selenium nanozarah dalam memperbaiki simptom dan komplikasi kencing manis dalam kajian yang bermodelkan haiwan. Umumnya, selenium merupakan mikronutrien penting yang terdapat pada manusia, tumbuhan dan haiwan yang digunakan sebagai selenoprotein dalam tubuh manusia. Analisis dan perbandingan pada beberapa penemuan menjelaskan bahawa SeNPs menunjukkan kesan penyembuhan ke atas komplikasi kencing manis kerana ciri antidiabetis, antioksidan, anti-radang dan penurunan lipid.

 

Kata kunci: Antidiabetis; kencing manis; nanozarah; selenium; sintesis hijau

 

REFERENCES

Abdel Maksoud, H.A., Abou Zaid, O.A.R., Elharrif, M.G., Omnia, M.A. & Alaa, E.A. 2020. Selenium cleome droserifolia nanoparticles (Se-CNPs) and it’s ameliorative effects in experimentally induced diabetes mellitus. Clinical Nutrition ESPEN 40: 383-391. https://doi.org/10.1016/j.clnesp.2020.07.016

Abdulmalek, S.A. & Balbaa, M. 2019. Synergistic effect of nano-selenium and metformin on Type 2 diabetic rat model: Diabetic complications alleviation through insulin sensitivity, oxidative mediators and inflammatory markers. PLoS ONE 14(8): e0220779. https://doi.org/10.1371/journal.pone.0220779

Abu-Elghait, M., Hasanin, M., Hashem, A.H. & Salem, S.S. 2021. Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules 175: 294-303. https://doi.org/10.1016/j.ijbiomac.2021.02.040

Ahmadvand, H., Shahsavari, G., Tavafi, M., Bagheri, S., Moradkhani, M.R., Kkorramabadi, R.M., Khosravi, P., Jafari, M., Zahabi, K., Eftekhar, R., Soleimaninejad, M. & Mohhadam, S. 2017. Protective effects of oleuropein against renal injury oxidative damage in alloxan-induced diabetic rats; a histological and biochemical study. Journal of Nephropathology 6(3): 204-209. https://doi.org/10.15171/jnp.2017.34

Alagesan, V. & Venugopal, S. 2019. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoScience 9(1): 105-116. https://doi.org/10.1007/s12668-018-0566-8

Alam, H., Khatoon, N., Khan, M.A., Husain, S.A., Saravanan, M. & Sardar, M. 2020. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. Journal of Cluster Science 31(5): 1003-1011. https://doi.org/10.1007/s10876-019-01705-6

Amin, M.A., Ismail, M.A., Badawy, A.A. & Awad, M.A. 2021. Improve the growth performance of Helianthus annuus L. and control of cutworm Agrotis ipsilon. Catalysts 11: 1551.

Azam, M. & Suriya, A. 2021. Microbial Nanotechnology: Green Synthesis and Applications. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-16-1923-6

Badgar, K. & Prokisch, J. 2021. Simple method for preparing elemental selenium nano-coating inside a silicone surface. Acta Agraria Debreceniensis 1: 35-43. https://doi.org/10.34101/actaagrar/1/8940

Beere, H.M., Wolf, B.B., Cain, K., Mosser, D.D., Mahboubi, A., Kuwana, T., Tailor, P., Morimoto, R.I., Cohen, G.M. & Green, D.R. 2000. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology 2(8): 469-475. https://doi.org/10.1038/35019501

Benko, I., Nagy, G., Tanczos, B., Ungvari, E., Sztrik, A., Eszenyi, P., Prokisch, J. & Banfalvi, G. 2012. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environmental Toxicology and Chemistry 31(12): 2812-2820. https://doi.org/10.1002/etc.1995

Bhardwaj, M., Yadav, P., Dalal, S. & Kataria, S.K. 2020. A review on ameliorative green nanotechnological approaches in diabetes management. Biomedicine and Pharmacotherapy 127(April): 110198. https://doi.org/10.1016/j.biopha.2020.110198

Bredesen, D.E. 2000. Apoptosis: Overview and signal transduction pathways. Journal of Neurotrauma 17(10): 801-810. https://doi.org/10.1089/neu.2000.17.801

Burhans, M.S., Hagman, D.K., Kuzma, J.N., Schmidt, K.A. & Kratz, M. 2019. Contribution of adipose tissue inflammation to the development of Type 2 diabetes mellitus. Comprehensive Physiology 9(1): 1-58. https://doi.org/10.1002/cphy.c170040

Chaudhary, S., Chauhan, P. & Kumar, R. 2019. Environmental fate descriptors for glycol-coated selenium nanoparticles: A quantitative multi-assay approach. Nanoscale Advances 1(12): 4790-4803. https://doi.org/10.1039/c9na00653b

Combs, G.F., Midthune, D.N., Patterson, K.Y., Canfield, W.K., Hill, A.D., Levander, O.A., Taylor, P.R., Moler, J.E. & Patterson, B.H. 2009. Effects of selenomethionine supplementation on selenium status and thyroid hormone concentrations in healthy adults. American Journal of Clinical Nutrition 89(6): 1808-1814. https://doi.org/10.3945/ajcn.2008.27356

Cui, Y.H., Li, L.L., Zhou, N.Q., Liu, J.H., Huang, Q., Wang, H.J., Tian, J. & Yu, H.Q. 2016. In vivo synthesis of nano-selenium by Tetrahymena thermophila SB210. Enzyme and Microbial Technology 95: 185-191. https://doi.org/10.1016/j.enzmictec.2016.08.017

Daryabor, G., Atashzar, M.R., Kabelitz, D., Meri, S. & Kalantar, K. 2020. The effects of Type 2 diabetes mellitus on organ metabolism and the immune system. Frontiers in Immunology 11(July). https://doi.org/10.3389/fimmu.2020.01582

Deng, W., Wang, H., Wu, B. & Zhang, X. 2019. Selenium-layered nanoparticles serving for oral delivery of phytomedicines with hypoglycemic activity to synergistically potentiate the antidiabetic effect. Acta Pharmaceutica Sinica B 9(1): 74-86. https://doi.org/10.1016/j.apsb.2018.09.009

Deng, W., Xie, Q., Wang, H., Ma, Z., Wu, B. & Zhang, X. 2017. Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine: Nanotechnology, Biology, and Medicine 13(6): 1965-1974. https://doi.org/10.1016/j.nano.2017.05.002

Dubey, P., Thakur, V. & Chattopadhyay, M. 2020. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 12(6): 1-17. https://doi.org/10.3390/nu12061864

El-Borady, O.M., Othman, M.S., Atallah, H.H. & Abdel Moneim, A.E. 2020. Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats. Heliyon 6(5). https://doi.org/10.1016/j.heliyon.2020.e04045

Elksnis, A., Martinell, M., Eriksson, O. & Espes, D. 2019. Heterogeneity of metabolic defects in Type 2 diabetes and its relation to reactive oxygen species and alterations in beta-cell mass. Frontiers in Physiology 10(FEB): 1-13. https://doi.org/10.3389/fphys.2019.00107

El-Ramady, H.R., Domokos-Szabolcsy, É., Abdalla, N.A., Alshaal, T.A., Shalaby, T.A., Sztrik, A., Prokisch, J. & Fári, M. 2014. Selenium and nano-selenium in agroecosystems. Environmental Chemistry Letters. Springer Verlag. https://doi.org/10.1007/s10311-014-0476-0

El-Saadony, M.T., Saad, A.M., Taha, T.F., Najjar, A.A., Zabermawi, N.M., Nader, M.M., AbuQamar, S.F., El-Tarabily, K.A. & Salama, A. 2021. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi Journal of Biological Sciences 28(12): 6782-6794. https://doi.org/10.1016/j.sjbs.2021.07.059

Ezaki, O. 1990. The insulin-like effects of selenate in rat adipocytes. Journal of Biological Chemistry 265(2): 1124-1128. https://doi.org/10.1016/s0021-9258(19)40166-x

Fakhruddin, S., Alanazi, W. & Jackson, K.E. 2017. Diabetes-induced reactive oxygen species: Mechanism of their generation and role in renal injury. Journal of Diabetes Research 2017: 8379327. https://doi.org/10.1155/2017/8379327

Ferro, C., Florindo, H.F. & Santos, H.A. 2021. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Advanced Healthcare Materials 10(16): e2100598. https://doi.org/10.1002/adhm.202100598

Festa, A., Agostino, R.D., Tracy, R.P. & Haffner, S.M. 2002. Plasminogen activator inhibitor-1 predict the insulin resistance atherosclerosis study. Diabetes 51(May 2001): 1131-1137.

Fontenelle, L.C., Feitosa, M.M., Silva Morais, J.B., Severo, J.S., Coelho de Freitas, T.E., Beserra, J.B., Henriques, G.S. & do Nascimento Marreiro, D. 2018. The role of selenium in insulin resistance. Brazilian Journal of Pharmaceutical Sciences 54(1): 1-11. https://doi.org/10.1590/s2175-97902018000100139

Francis, T., Rajeshkumar, S., Roy, A. & Lakshmi, T. 2020. Anti-inflammatory and cytotoxic effect of arrow root mediated selenium nanoparticles. Pharmacognosy Journal 12(6): 1363-1367. https://doi.org/10.5530/PJ.2020.12.188

Frandsen, C.S., Dejgaard, T.F. & Madsbad, S. 2016. Non-insulin drugs to treat hyperglycaemia in Type 1 diabetes mellitus. The Lancet Diabetes and Endocrinology 4(9): 766-780. https://doi.org/10.1016/S2213-8587(16)00039-5

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., Ostolaza, H. & Martín, C. 2020. Pathophysiology of Type 2 diabetes mellitus. International Journal of Molecular Sciences 21(17): 6275. https://doi.org/10.3390/ijms21176275

Gao, F., Zhao, J., Liu, P., Ji, D., Zhang, L., Zhang, M., Li, Y. & Xiao, Y. 2020. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer’s disease. International Journal of Biological Macromolecules 142(January): 265-276. https://doi.org/10.1016/j.ijbiomac.2019.09.098

Ghosh, S., Ahmad, R., Banerjee, K., AlAjmi, M.F. & Rahman, S. 2021. Mechanistic aspects of microbe-mediated nanoparticle synthesis. Frontiers in Microbiology 12(May): 1-12. https://doi.org/10.3389/fmicb.2021.638068

Guo, L., Xiao, J., Liu, H. & Liu, H. 2020. Selenium nanoparticles alleviate hyperlipidemia and vascular injury in ApoE-deficient mice by regulating cholesterol metabolism and reducing oxidative stress. Metallomics 12(2): 204-217. https://doi.org/10.1039/c9mt00215d

Hamza, R.Z. & Diab, A.E.A.A. 2020. Testicular protective and antioxidant effects of selenium nanoparticles on monosodium glutamate-induced testicular structure alterations in male mice. Toxicology Reports 7(January): 254-260. https://doi.org/10.1016/j.toxrep.2020.01.012

Hashem, A.H., Aly Khalil, A.M., Reyad, A.M. & Salem, S.S. 2021. Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biological Trace Element Research 199(10): 3998-4008. https://doi.org/10.1007/s12011-020-02506-z

Hassan, I., Ebaid, H., Al-Tamimi, J., Habila, M.A., Alhazza, I.M. & Rady, A.M. 2021. Selenium nanoparticles mitigate diabetic nephropathy and pancreatopathy in rat offspring via inhibition of oxidative stress. Journal of King Saud University - Science 33(1): 101265. https://doi.org/10.1016/j.jksus.2020.101265

Hei, Y.J., Farahbakhshian, S., Chen, X., Battell, M.L. & McNeill, J.H. 1998. Stimulation of MAP kinase and S6 kinase by vanadium and selenium in rat adipocytes. Molecular and Cellular Biochemistry 178(1-2): 367-375. https://doi.org/10.1023/A:1006819906820

Hojs, N.V., Bevc, S., Ekart, R. & Hojs, R. 2020. Oxidative stress markers in chronic kidney disease with emphasis on diabetic nephropathy. Antioxidants 9(10): 1-22. https://doi.org/10.3390/antiox9100925

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrilova, R., Zidkova, J., Bjørklund, G., Sochor, J. & Kizek, R. 2018. Nano-selenium and its nanomedicine applications: A critical review. International Journal of Nanomedicine 13: 2107-2128. https://doi.org/10.2147/IJN.S157541

Huang, X., Chen, X., Chen, Q., Yu, Q., Sun, D. & Liu, J. 2016. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomaterialia 30: 397-407. https://doi.org/10.1016/j.actbio.2015.10.041

Huang, Z., Rose, A.H. & Hoffmann, P.R. 2012. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxidants and Redox Signaling 16(7): 705-743. https://doi.org/10.1089/ars.2011.4145

Ighodaro, O.M. & Akinloye, O.A. 2018. First line defence antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine 54(4): 287-293. https://doi.org/10.1016/j.ajme.2017.09.001

Ikram, M., Javed, B., Raja, N.I. & Mashwani, Z.U.R. 2021. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. International Journal of Nanomedicine 16: 249-268. https://doi.org/10.2147/IJN.S295053

International Diabetes Federation. 2021. IDF Diabetes Atlas. Brussels, Belgium.

Jablonska, E., Reszka, E., Gromadzinska, J., Wieczorek, E., Krol, M.B., Raimondi, S., Socha, K., Borawska, M.H. & Wasowicz, W. 2016. The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients 8(12): 1-12. https://doi.org/10.3390/nu8120772

Jadoun, S., Arif, R., Jangid, N.K. & Meena, R.K. 2021. Green synthesis of nanoparticles using plant extracts: A review. Environmental Chemistry Letters 19(1): 355-374. https://doi.org/10.1007/s10311-020-01074-x

Jha, J.C., Ho, F., Dan, C. & Jandeleit-Dahm, K. 2018. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clinical Science 132(16): 1811-1836. https://doi.org/10.1042/CS20171459

Jin, Y., He, Y., Liu, L., Tao, W., Wang, G., Sun, W., Pei, X., Xiao, Z., Wang, H. & Wang, M. 2021. Effects of supranutritional selenium nanoparticles on immune and antioxidant capacity in Sprague-Dawley rats. Biological Trace Element Research 199(12): 4666-4674. https://doi.org/10.1007/s12011-021-02601-9

Karalis, D.T. 2019. The beneficiary role of selenium in Type II diabetes: A longitudinal study. Cureus 11(12): e6443. https://doi.org/10.7759/cureus.6443

Khater, S.I., Abdel Rahman Mohamed, A., Arisha, A.H., Ebraheim, L.L.M., El-Mandrawy, S.A.M., Nassan, M.A., Mohammed, A.T. & Abdo, S.A. 2021. Stabilized-chitosan selenium nanoparticles efficiently reduce renal tissue injury and regulate the expression pattern of aldose reductase in the diabetic-nephropathy rat model. Life Sciences 279: 119674. https://doi.org/10.1016/j.lfs.2021.119674

Kieliszek, M. 2019. Selenium-fascinating microelement, properties and sources in food. Molecules 24(7): 1298. https://doi.org/10.3390/molecules24071298

Kora, A.J. & Rastogi, L. 2016. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management 181: 231-236. https://doi.org/10.1016/j.jenvman.2016.06.029

Kumar, G.S., Kulkarni, A., Khurana, A., Kaur, J. & Tikoo, K. 2014. Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of Type 1 diabetic nephropathy. Chemico-Biological Interactions 223: 125-133. https://doi.org/10.1016/j.cbi.2014.09.017

Kuršvietienė, L., Mongirdienė, A., Bernatonienė, J., Šulinskienė, J. & Stanevičienė, I. 2020. Selenium anticancer properties and impact on cellular redox status. Antioxidants (Basel) 9(1): 80. MDPI. https://doi.org/10.3390/antiox9010080

Kurutas, E.B. 2016. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal 15(1): 1-22. https://doi.org/10.1186/s12937-016-0186-5

Lamb, R.E. & Goldstein, B.J. 2008. Modulating an oxidative-inflammatory cascade: Potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. International Journal of Clinical Practice 62(7): 1087-1095. https://doi.org/10.1111/j.1742-1241.2008.01789.x

Langlais, P., Yi, Z., Finlayson, J., Luo, M., Mapes, R., De Filippis, E., Meyer, C., Plummer, E., Tongchinsub, P., Mattern, M. & Mandarino, L.J. 2011. Global IRS-1 phosphorylation analysis in insulin resistance. Diabetologia 54(11): 2878-2889. https://doi.org/10.1007/s00125-011-2271-9

Lara, H.H., Guisbiers, G., Mendoza, J., Mimun, L.C., Vincent, B.A., Lopez-Ribot, J.L. & Nash, K.L. 2018. Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. International Journal of Nanomedicine 13: 2697-2708. https://doi.org/10.2147/IJN.S151285

Lian, S., Diko, C.S., Yan, Y., Li, Z., Zhang, H., Ma, Q. & Qu, Y. 2019. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9(6): 1-8. https://doi.org/10.1007/s13205-019-1748-y

Lin, Z.H. & Chris Wang, C.R. 2005. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Materials Chemistry and Physics 92(2-3): 591-594. https://doi.org/10.1016/j.matchemphys.2005.02.023

Liu, Z., Ren, Z., Zhang, J., Chuang, C.C., Kandaswamy, E., Zhou, T. & Zuo, L. 2018. Role of ROS and nutritional antioxidants in human diseases. Frontiers in Physiology 9(MAY): 1-14. https://doi.org/10.3389/fphys.2018.00477

MacFarquhar, J.K. 2010. Acute selenium toxicity associated with a dietary supplement. Archives of Internal Medicine 170(3): 256. https://doi.org/10.1001/archinternmed.2009.495

Martindale, J.L. & Holbrook, N.J. 2002. Cellular response to oxidative stress: Signaling for suicide and survival. Journal of Cellular Physiology 192(1): 1-15. https://doi.org/10.1002/jcp.10119

Masarone, M., Rosato, V., Aglitti, A., Bucci, T., Caruso, R., Salvatore, T., Sasso, F.C., Tripodi, M.F. & Persico, M. 2017. Liver biopsy in Type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage. PLoS ONE 12(6): 1-10. https://doi.org/10.1371/journal.pone.0178473

Medina Cruz, D., Mi, G. & Webster, T.J. 2018. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. Journal of Biomedical Materials Research - Part A 106(5): 1400-1412. https://doi.org/10.1002/jbm.a.36347

Mohamed, A.A.R., Khater, S.I., Arisha, A.H., Metwally, M.M.M., Mostafa-Hedeab, G. & El-Shetry, E.S. 2021. Chitosan-stabilized selenium nanoparticles alleviate cardio-hepatic damage in Type 2 diabetes mellitus model via regulation of caspase, Bax/Bcl-2, and Fas/FasL-pathway. Gene 768: 145288. https://doi.org/10.1016/j.gene.2020.145288

Mosallam, F.M., El-Sayyad, G.S., Fathy, R.M. & El-Batal, A.I. 2018. Biomolecules-mediated synthesis of selenium nanoparticles using Aspergillus oryzae fermented lupin extract and gamma radiation for hindering the growth of some multidrug-resistant bacteria and pathogenic fungi. Microbial Pathogenesis 122: 108-116. https://doi.org/10.1016/j.micpath.2018.06.013

Muniandy, S.S., Sasidharan, S. & Lee, H.L. 2019. Green synthesis of Ag nanoparticles and their performance towards antimicrobial properties. Sains Malaysiana 48(4): 851-860. https://doi.org/10.17576/jsm-2019-4804-17

Nadaroğlu, H., Güngör, A.A. & İnce, S. 2017. Synthesis of nanoparticles by green synthesis method. International Journal of Innovative Research and Reviews 1(1): 6-9.

Nasrollahzadeh, M., Atarod, M., Sajjadi, M., Sajadi, S.M. & Issaabadi, Z. 2019. Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. Interface Science and Technology 28: 199-322. https://doi.org/10.1016/B978-0-12-813586-0.00006-7

Neha, K., Haider, M.R., Pathak, A. & Yar, M.S. 2019. Medicinal prospects of antioxidants: A review. European Journal of Medicinal Chemistry 178: 687-704. https://doi.org/10.1016/j.ejmech.2019.06.010

Nelson, A.J., Rochelau, S.K. & Nicholls, S.J. 2018. Managing dyslipidemia in Type 2 diabetes. Endocrinology and Metabolism Clinics of North America 47(1): 153-173. https://doi.org/10.1016/j.ecl.2017.10.004

Oguntibeju, O.O. 2019. Type 2 Diabetes mellitus, oxidative stress and inflammation: Examining the links. International Journal of Physiology, Pathophysiology and Pharmacology 11(3): 45-63.

Ouyang, J., Cai, Y., Song, Y., Gao, Z., Bai, R. & Wang, A. 2022. Potential benefits of selenium supplementation in reducing insulin resistance in patients with cardiometabolic diseases: A systematic review and meta-analysis. Nutrients 14(22): 4933. https://doi.org/10.3390/nu14224933

Pan, Z., Huang, J., Hu, T., Zhang, Y., Zhang, L., Zhang, J., Cui, D., Li, L., Wang, J. & Wu, Q. 2023. Protective effects of selenium nanoparticles against bisphenol A-Induced toxicity in porcine intestinal epithelial cells. International Journal of Molecular Sciences 24(8): 7242. https://doi.org/10.3390/ijms24087242

Panahi-Kalamuei, M., Salavati-Niasari, M. & Hosseinpour-Mashkani, S.M. 2014. Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. Journal of Alloys and Compounds 617: 627-632. https://doi.org/10.1016/j.jallcom.2014.07.174

Prabhakar, P.K., Kumar, A. & Doble, M. 2014. Combination therapy: A new strategy to manage diabetes and its complications. Phytomedicine 21(2): 123-130. https://doi.org/10.1016/j.phymed.2013.08.020

Presentato, A., Piacenza, E., Anikovskiy, M., Cappelletti, M., Zannoni, D. & Turner, R.J. 2018. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnology 41: 1-8. https://doi.org/10.1016/j.nbt.2017.11.002

Quintana, M., Haro-Poniatowski, E., Morales, J. & Batina, N. 2002. Synthesis of selenium nanoparticles by pulsed laser ablation. Applied Surface Science 195(1-4): 175-186. https://doi.org/10.1016/S0169-4332(02)00549-4

Ramya, S., Shanmugasundaram, T. & Balagurunathan, R. 2015. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. Journal of Trace Elements in Medicine and Biology 32: 30-39. https://doi.org/10.1016/j.jtemb.2015.05.005

Rashid, I.M., Salman, S.D., Mohammed, A.K. & Mahdi, Y.S. 2022. Green synthesis of nickle oxide nanoparticles for adsorption of dyes. Sains Malaysiana 51(2): 533-546. https://doi.org/10.17576/jsm-2022-5102-17

Rehani, P.R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z. & Rehani, R.N. 2019. Safety and mode of action of diabetes medications in comparison with 5-Aminolevulinic acid (5-ALA). Journal of Diabetes Research 2019: 4267357. https://doi.org/10.1155/2019/4267357

Ronco, M.T., De Luján Alvarez, M., Monti, J., Carrillo, M.C., Pisani, G., Lugano, M.C. & Carnovale, C.E. 2002. Modulation of balance between apoptosis and proliferation by lipid peroxidation (LPO) during rat liver regeneration. Molecular Medicine 8(12): 808-817. https://doi.org/10.1007/bf03402085

Roy, M., Kiremidjian-Schumacher, L., Wishe, H.I., Cohen, M.W. & Stotzky, G. 1992. Selenium supplementation enhances the expression of interleukin 2 receptor subunits and internalization of interleukin. Proc. Soc. Exp. Biol. Med. 202(3): 295-301.

Ruan, H., Miles, P.D.G., Ladd, C.M., Ross, K., Golub, T.R., Olefsky, J.M. & Lodish, H.F. 2002. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis Factor-α. Diabetes 51(11): 3176-3188. https://doi.org/10.2337/diabetes.51.11.3176

Sadeghian, S., Kojouri, G.A. & Mohebbi, A. 2012. Nanoparticles of selenium as species with stronger physiological effects in sheep in comparison with sodium selenite. Biological Trace Element Research 146(3): 302-308. https://doi.org/10.1007/s12011-011-9266-8

Saif-Elnasr, M., Abdel-Aziz, N. & El-Batal, A.I. 2019. Ameliorative effect of selenium nanoparticles and fish oil on cisplatin and gamma irradiation-induced nephrotoxicity in male albino rats. Drug and Chemical Toxicology 42(1): 94-103. https://doi.org/10.1080/01480545.2018.1497050

Sakamula, R., Yata, T. & Thong-Asa, W. 2021. Effects of alpha-mangostin encapsulated in nanostructured lipid carriers in mice with cerebral ischemia reperfusion injury. Sains Malaysiana 50(7): 2007-2015. https://doi.org/10.17576/jsm-2021-5007-15

Satgurunathan, T., Bhavan, P.S. & Komathi, S. 2017. Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Research Journal of Chemistry and Environment 21(10): 1-12.

Sentkowska, A. & Pyrzyńska, K. 2022. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 27(8): 2486. https://doi.org/10.3390/molecules27082486

Shah, C.P., Dwivedi, C., Singh, K.K., Kumar, M. & Bajaj, P.N. 2010. Riley oxidation: A forgotten name reaction for synthesis of selenium nanoparticles. Materials Research Bulletin 45(9): 1213-1217. https://doi.org/10.1016/j.materresbull.2010.05.013

Shinohara, T., Takahashi, N., Ooie, T., Hara, M., Shigematsu, S., Nakagawa, M., Yonemochi, H., Saikawa, T. & Yoshimatsu, H. 2006. Phosphatidylinositol 3-Kinase-Dependent activation of Akt, an essential signal for hyperthermia-induced heat-shock protein 72, is attenuated in streptozotocin-induced diabetic heart. Diabetes 55(5): 1307-1315. https://doi.org/10.2337/db05-0266

Shoeibi, S. & Mashreghi, M. 2017. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. Journal of Trace Elements in Medicine and Biology 39: 135-139. https://doi.org/10.1016/j.jtemb.2016.09.003

Singh, V.P., Bali, A., Singh, N. & Jaggi, A.S. 2014. Advanced glycation end products and diabetic complications. Korean Journal of Physiology and Pharmacology 18(1): 1-14. https://doi.org/10.4196/kjpp.2014.18.1.1

Steinbrenner, H., Speckmann, B., Pinto, A. & Sies, H. 2010. High selenium intake and increased diabetes risk: Experimental evidence for interplay between selenium and carbohydrate metabolism. Journal of Clinical Biochemistry and Nutrition 48(1): 40-45. https://doi.org/10.3164/jcbn.11-002FR

Takahashi, K., Suzuki, N. & Ogra, Y. 2017. Bioavailability comparison of nine bioselenocompounds in vitro and in vivo. International Journal of Molecular Sciences 18(3): 506. https://doi.org/10.3390/ijms18030506

Tan, B.L., Norhaizan, M.E., Liew, W.P.P. & Sulaiman Rahman, H. 2018. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Frontiers in Pharmacology 9: 1-28. https://doi.org/10.3389/fphar.2018.01162

Tinggi, U. 2008. Selenium: Its role as antioxidant in human health. Environmental Health and Preventive Medicine 13(2): 102-108. https://doi.org/10.1007/s12199-007-0019-4

Tran, N., Pham, B. & Le, L. 2020. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 9(9): 1-31. https://doi.org/10.3390/biology9090252

Wadhwani, S.A., Gorain, M., Banerjee, P., Shedbalkar, U.U., Singh, R., Kundu, G.C. & Chopade, B.A. 2017. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. International Journal of Nanomedicine 12: 6841-6855. https://doi.org/10.2147/IJN.S139212

Wan, K.S., Hairi, N.N., Foong, M.M., Feisul Idzwan, M., Khalijah, M.Y. & Zainudin, M.A. 2021. Poorer attainment of hemoglobin A1C, blood pressure and LDL-Cholesterol goals among younger adults with Type 2 diabetes. Sains Malaysiana 50(12): 3631-3645. https://doi.org/10.17576/jsm-2021-5012-14

Wang, H., Zhang, J. & Yu, H. 2007. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biology and Medicine 42(10): 1524-1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013

Wang, J.J., Zhang, R.Q., Zhai, Q.Y., Liu, J.C., Li, N., Liu, W.X., Li, L. & Shen, W. 2019. Metagenomic analysis of gut microbiota alteration in a mouse model exposed to mycotoxin deoxynivalenol. Toxicology and Applied Pharmacology 372: 47-56. https://doi.org/10.1016/j.taap.2019.04.009

Wei, J., Zeng, C., Gong, Q.Y., Yang, H.B., Li, X.X., Lei, G.H. & Yang, T.B. 2015. The association between dietary selenium intake and diabetes: A cross-sectional study among middle-aged and older adults. Nutrition Journal 14: 18. https://doi.org/10.1186/s12937-015-0007-2

Wellen, K.E. 2005. Inflammation, stress, and diabetes. Journal of Clinical Investigation 115(5): 1111-1119. https://doi.org/lan

Westerheide, S.D., Anckar, J., Stevens, S.M., Sistonen, L. & Morimoto, R.I. 2009. Stress-inducible regulation of heat shock factor 1 by the Deacetylase SIRT1. Science 323(5917): 1063-1066. https://doi.org/10.1126/science.1165946

Xu, C., Qiao, L., Guo, Y., Ma, L. & Cheng, Y. 2018. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei ATCC 393. Carbohydrate Polymers 195: 576-585. https://doi.org/10.1016/j.carbpol.2018.04.110

Yuan, D., He, H., Wu, Y., Fan, J. & Cao, Y. 2019. Physiologically based pharmacokinetic modeling of nanoparticles. Journal of Pharmaceutical Sciences 108(1): 58-72. https://doi.org/10.1016/j.xphs.2018.10.037

Zeng, S., Ke, Y., Liu, Y., Shen, Y., Zhang, L., Li, C., Liu, A., Shen, L., Hu, X., Wu, H., Wu, W. & Liu, Y. 2018. Synthesis and antidiabetic properties of chitosan-stabilized selenium nanoparticles. Colloids and Surfaces B: Biointerfaces 170: 115-121. https://doi.org/10.1016/j.colsurfb.2018.06.003

Zhang, H., Zhou, H., Bai, J., Li, Y., Yang, J., Ma, Q. & Qu, Y. 2019. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 571: 9-16. https://doi.org/10.1016/j.colsurfa.2019.02.070

Zhang, J-S., Gao, X-Y., Zhang, L-D. & Bao, Y-P. 2001. Biological effects of a nano red elemental selenium. BioFactors 15(1): 27-38. https://doi.org/10.1002/biof.5520150103

Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y. & Dong, W. 2016. ROS and ROS-mediated cellular signaling. Oxidative Medicine and Cellular Longevity 2016: 4350965. https://doi.org/10.1155/2016/4350965

Zorov, D.B., Juhaszova, M. & Sollott, S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews 94(3): 909-950. https://doi.org/10.1152/physrev.00026.2013

 

*Corresponding author; email: siti.hajar@upnm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous